Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 20 de 75
Filter
1.
Int J Mol Sci ; 24(11)2023 Jun 01.
Article in English | MEDLINE | ID: covidwho-20243310

ABSTRACT

Galectin-3 (Gal-3), a beta-galactoside-binding lectin, plays a pivotal role in various cellular processes, including immune responses, inflammation, and cancer progression. This comprehensive review aims to elucidate the multifaceted functions of Gal-3, starting with its crucial involvement in viral entry through facilitating viral attachment and catalyzing internalization. Furthermore, Gal-3 assumes significant roles in modulating immune responses, encompassing the activation and recruitment of immune cells, regulation of immune signaling pathways, and orchestration of cellular processes such as apoptosis and autophagy. The impact of Gal-3 extends to the viral life cycle, encompassing critical phases such as replication, assembly, and release. Notably, Gal-3 also contributes to viral pathogenesis, demonstrating involvement in tissue damage, inflammation, and viral persistence and latency elements. A detailed examination of specific viral diseases, including SARS-CoV-2, HIV, and influenza A, underscores the intricate role of Gal-3 in modulating immune responses and facilitating viral adherence and entry. Moreover, the potential of Gal-3 as a biomarker for disease severity, particularly in COVID-19, is considered. Gaining further insight into the mechanisms and roles of Gal-3 in these infections could pave the way for the development of innovative treatment and prevention options for a wide range of viral diseases.


Subject(s)
COVID-19 , Virus Diseases , Humans , Galectin 3/metabolism , SARS-CoV-2/metabolism , Galectins/metabolism , Virus Diseases/metabolism , Inflammation , Host-Pathogen Interactions
2.
J Neurovirol ; 29(2): 121-134, 2023 04.
Article in English | MEDLINE | ID: covidwho-2304443

ABSTRACT

Progress in stem cell research has revolutionized the medical field for more than two decades. More recently, the discovery of induced pluripotent stem cells (iPSCs) has allowed for the development of advanced disease modeling and tissue engineering platforms. iPSCs are generated from adult somatic cells by reprogramming them into an embryonic-like state via the expression of transcription factors required for establishing pluripotency. In the context of the central nervous system (CNS), iPSCs have the potential to differentiate into a wide variety of brain cell types including neurons, astrocytes, microglial cells, endothelial cells, and oligodendrocytes. iPSCs can be used to generate brain organoids by using a constructive approach in three-dimensional (3D) culture in vitro. Recent advances in 3D brain organoid modeling have provided access to a better understanding of cell-to-cell interactions in disease progression, particularly with neurotropic viral infections. Neurotropic viral infections have been difficult to study in two-dimensional culture systems in vitro due to the lack of a multicellular composition of CNS cell networks. In recent years, 3D brain organoids have been preferred for modeling neurotropic viral diseases and have provided invaluable information for better understanding the molecular regulation of viral infection and cellular responses. Here we provide a comprehensive review of the literature on recent advances in iPSC-derived 3D brain organoid culturing and their utilization in modeling major neurotropic viral infections including HIV-1, HSV-1, JCV, ZIKV, CMV, and SARS-CoV2.


Subject(s)
COVID-19 , Induced Pluripotent Stem Cells , Virus Diseases , Viruses , Zika Virus Infection , Zika Virus , Humans , Induced Pluripotent Stem Cells/metabolism , Zika Virus Infection/genetics , Endothelial Cells , RNA, Viral/metabolism , SARS-CoV-2 , Brain , Virus Diseases/metabolism , Organoids/metabolism
3.
Int J Mol Sci ; 24(3)2023 Jan 21.
Article in English | MEDLINE | ID: covidwho-2252177

ABSTRACT

Liquid-liquid phase separation (LLPS) is responsible for the formation of so-called membrane-less organelles (MLOs) that are essential for the spatio-temporal organization of the cell. Intrinsically disordered proteins (IDPs) or regions (IDRs), either alone or in conjunction with nucleic acids, are involved in the formation of these intracellular condensates. Notably, viruses exploit LLPS at their own benefit to form viral replication compartments. Beyond giving rise to biomolecular condensates, viral proteins are also known to partition into cellular MLOs, thus raising the question as to whether these cellular phase-separating proteins are drivers of LLPS or behave as clients/regulators. Here, we focus on a set of eukaryotic proteins that are either sequestered in viral factories or colocalize with viral proteins within cellular MLOs, with the primary goal of gathering organized, predicted, and experimental information on these proteins, which constitute promising targets for innovative antiviral strategies. Using various computational approaches, we thoroughly investigated their disorder content and inherent propensity to undergo LLPS, along with their biological functions and interactivity networks. Results show that these proteins are on average, though to varying degrees, enriched in disorder, with their propensity for phase separation being correlated, as expected, with their disorder content. A trend, which awaits further validation, tends to emerge whereby the most disordered proteins serve as drivers, while more ordered cellular proteins tend instead to be clients of viral factories. In light of their high disorder content and their annotated LLPS behavior, most proteins in our data set are drivers or co-drivers of molecular condensation, foreshadowing a key role of these cellular proteins in the scaffolding of viral infection-related MLOs.


Subject(s)
Intrinsically Disordered Proteins , Virus Diseases , Humans , Organelles/metabolism , Intrinsically Disordered Proteins/metabolism , Viral Proteins/metabolism , Virus Diseases/metabolism , Eukaryota/metabolism
4.
Int J Mol Sci ; 24(2)2023 Jan 13.
Article in English | MEDLINE | ID: covidwho-2234674

ABSTRACT

Transactive response DNA binding protein 43 kDa (TDP-43) was discovered in 2001 as a cellular factor capable to inhibit HIV-1 gene expression. Successively, it was brought to new life as the most prevalent RNA-binding protein involved in several neurological disorders, such as amyotrophic lateral sclerosis (ALS) and frontotemporal lobar degeneration (FTLD). Despite the fact that these two research areas could be considered very distant from each other, in recent years an increasing number of publications pointed out the existence of a potentially important connection. Indeed, the ability of TDP-43 to act as an important regulator of all aspects of RNA metabolism makes this protein also a critical factor during expression of viral RNAs. Here, we summarize all recent observations regarding the involvement of TDP-43 in viral entry, replication and latency in several viruses that include enteroviruses (EVs), Theiler's murine encephalomyelitis virus (TMEV), human immunodeficiency virus (HIV), human endogenous retroviruses (HERVs), hepatitis B virus (HBV), severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), West Nile virus (WNV), and herpes simplex virus-2 (HSV). In particular, in this work, we aimed to highlight the presence of similarities with the most commonly studied TDP-43 related neuronal dysfunctions.


Subject(s)
TDP-43 Proteinopathies , Virus Diseases , Animals , Humans , Mice , Amyotrophic Lateral Sclerosis/genetics , Amyotrophic Lateral Sclerosis/metabolism , COVID-19/genetics , COVID-19/metabolism , DNA-Binding Proteins/metabolism , Frontotemporal Lobar Degeneration/genetics , Frontotemporal Lobar Degeneration/metabolism , SARS-CoV-2/metabolism , TDP-43 Proteinopathies/genetics , TDP-43 Proteinopathies/metabolism , Virus Diseases/genetics , Virus Diseases/metabolism
5.
Front Immunol ; 14: 1064101, 2023.
Article in English | MEDLINE | ID: covidwho-2234033

ABSTRACT

Cellular metabolism is essential for the correct function of immune system cells, including Natural Killer cells (NK). These cells depend on energy to carry out their effector functions, especially in the early stages of viral infection. NK cells participate in the innate immune response against viruses and tumors. Their main functions are cytotoxicity and cytokine production. Metabolic changes can impact intracellular signals, molecule production, secretion, and cell activation which is essential as the first line of immune defense. Metabolic variations in different immune cells in response to a tumor or pathogen infection have been described; however, little is known about NK cell metabolism in the context of viral infection. This review summarizes the activation-specific metabolic changes in NK cells, the immunometabolism of NK cells during early, late, and chronic antiviral responses, and the metabolic alterations in NK cells in SARS-CoV2 infection. The modulation points of these metabolic routes are also discussed to explore potential new immunotherapies against viral infections.


Subject(s)
COVID-19 , Virus Diseases , Humans , RNA, Viral/metabolism , COVID-19/metabolism , SARS-CoV-2 , Killer Cells, Natural , Virus Diseases/metabolism
6.
Nucleic Acids Res ; 50(D1): D817-D827, 2022 01 07.
Article in English | MEDLINE | ID: covidwho-2236145

ABSTRACT

Virus infections are huge threats to living organisms and cause many diseases, such as COVID-19 caused by SARS-CoV-2, which has led to millions of deaths. To develop effective strategies to control viral infection, we need to understand its molecular events in host cells. Virus related functional genomic datasets are growing rapidly, however, an integrative platform for systematically investigating host responses to viruses is missing. Here, we developed a user-friendly multi-omics portal of viral infection named as MVIP (https://mvip.whu.edu.cn/). We manually collected available high-throughput sequencing data under viral infection, and unified their detailed metadata including virus, host species, infection time, assay, and target, etc. We processed multi-layered omics data of more than 4900 viral infected samples from 77 viruses and 33 host species with standard pipelines, including RNA-seq, ChIP-seq, and CLIP-seq, etc. In addition, we integrated these genome-wide signals into customized genome browsers, and developed multiple dynamic charts to exhibit the information, such as time-course dynamic and differential gene expression profiles, alternative splicing changes and enriched GO/KEGG terms. Furthermore, we implemented several tools for efficiently mining the virus-host interactions by virus, host and genes. MVIP would help users to retrieve large-scale functional information and promote the understanding of virus-host interactions.


Subject(s)
Databases, Factual , Host Microbial Interactions , Virus Diseases , Animals , Chromatin Immunoprecipitation Sequencing , Gene Ontology , Genome, Viral , High-Throughput Nucleotide Sequencing , Host Microbial Interactions/genetics , Humans , Metadata , Sequence Analysis, RNA , Software , Transcriptome , User-Computer Interface , Virus Diseases/genetics , Virus Diseases/metabolism , Web Browser
7.
Molecules ; 28(1)2022 Dec 21.
Article in English | MEDLINE | ID: covidwho-2200539

ABSTRACT

Cell death is a fundamental pathophysiological process in human disease. The discovery of necroptosis, a form of regulated necrosis that is induced by the activation of death receptors and formation of necrosome, represents a major breakthrough in the field of cell death in the past decade. Z-DNA-binding protein (ZBP1) is an interferon (IFN)-inducing protein, initially reported as a double-stranded DNA (dsDNA) sensor, which induces an innate inflammatory response. Recently, ZBP1 was identified as an important sensor of necroptosis during virus infection. It connects viral nucleic acid and receptor-interacting protein kinase 3 (RIPK3) via two domains and induces the formation of a necrosome. Recent studies have also reported that ZBP1 induces necroptosis in non-viral infections and mediates necrotic signal transduction by a unique mechanism. This review highlights the discovery of ZBP1 and its novel findings in necroptosis and provides an insight into its critical role in the crosstalk between different types of cell death, which may represent a new therapeutic option.


Subject(s)
Necroptosis , Necrosis , Humans , Necrosis/drug therapy , Necrosis/metabolism , Virus Diseases/metabolism
8.
Front Cell Infect Microbiol ; 12: 953022, 2022.
Article in English | MEDLINE | ID: covidwho-2039663

ABSTRACT

Upon acute viral infection, virus-specific CD4+ T cells differentiate into either TH1 cells or follicular helper T (TFH) cells. The molecular pathways governing such bimodal cell fate commitment remain elusive. Additionally, effector virus-specific TFH cells further differentiate into corresponding memory population, which confer long-term protection against re-infection of same viruses by providing immediate help to virus-specific memory B cells. Currently, the molecular mechanisms underlying the long-term maintenance of memory TFH cells are largely unknown. In this review, we discuss current understanding of early differentiation of virus-specific effector TFH cells and long-term maintenance of virus-specific memory TFH cells in mouse models of viral infection and patients of the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection.


Subject(s)
COVID-19 , Virus Diseases , Animals , Cell Differentiation , Mice , SARS-CoV-2 , T Follicular Helper Cells , T-Lymphocytes, Helper-Inducer , Virus Diseases/metabolism
10.
Hum Cell ; 35(6): 1633-1639, 2022 Nov.
Article in English | MEDLINE | ID: covidwho-2014580

ABSTRACT

Endothelial dysfunction is one of the key cornerstone complications of emerging and re-emerging viruses which lead to vascular leakage and a high mortality rate. The mechanism that regulates the origin of endothelial dysregulation is not completely elucidated. Currently, there are no potential pharmacological treatments and curable management for such diseases. In this sense, mesenchymal stromal/stem cells (MSCs) has been emerging to be a promising therapeutic strategy in restoring endothelial barrier function in various lung disease, including ALI and ARDS. The mechanism of the role of MSCs in restoring endothelial integrity among single-strand RNA (ssRNA) viruses that target endothelial cells remains elusive. Thus, we have discussed the therapeutic role of MSCs in restoring vascular integrity by (i) inhibiting the metalloprotease activity thereby preventing the cleavage of tight junction proteins, which are essential for maintaining membrane integrity (ii) possessing antioxidant properties which neutralize the excessive ROS production due to virus infection and its associated hyper host immune response (iii) modulating micro RNAs that regulate the endothelial activation and its integrity by downregulating the inflammatory response during ssRNA infection.


Subject(s)
Mesenchymal Stem Cell Transplantation , Mesenchymal Stem Cells , Virus Diseases , Antioxidants/metabolism , Endothelial Cells/metabolism , Humans , Mesenchymal Stem Cells/physiology , Metalloproteases/metabolism , RNA , Reactive Oxygen Species/metabolism , Tight Junction Proteins/metabolism , Virus Diseases/metabolism
11.
J Immunol ; 209(7): 1323-1334, 2022 10 01.
Article in English | MEDLINE | ID: covidwho-2002569

ABSTRACT

Obesity is considered an important comorbidity for a range of noninfectious and infectious disease states including those that originate in the lung, yet the mechanisms that contribute to this susceptibility are not well defined. In this study, we used the diet-induced obesity (DIO) mouse model and two models of acute pulmonary infection, Francisella tularensis subspecies tularensis strain SchuS4 and SARS-CoV-2, to uncover the contribution of obesity in bacterial and viral disease. Whereas DIO mice were more resistant to infection with SchuS4, DIO animals were more susceptible to SARS-CoV-2 infection compared with regular weight mice. In both models, neither survival nor morbidity correlated with differences in pathogen load, overall cellularity, or influx of inflammatory cells in target organs of DIO and regular weight animals. Increased susceptibility was also not associated with exacerbated production of cytokines and chemokines in either model. Rather, we observed pathogen-specific dysregulation of the host lipidome that was associated with vulnerability to infection. Inhibition of specific pathways required for generation of lipid mediators reversed resistance to both bacterial and viral infection. Taken together, our data demonstrate disparity among obese individuals for control of lethal bacterial and viral infection and suggest that dysregulation of the host lipidome contributes to increased susceptibility to viral infection in the obese host.


Subject(s)
COVID-19 , Francisella tularensis , Tularemia , Virus Diseases , Animals , Chemokines/metabolism , Cytokines/metabolism , Lipids , Lung/microbiology , Mice , Mice, Inbred C57BL , Obesity/metabolism , SARS-CoV-2 , Virus Diseases/metabolism
13.
Biomol Concepts ; 13(1): 220-229, 2022 Apr 19.
Article in English | MEDLINE | ID: covidwho-1793459

ABSTRACT

The exposure of organisms and cells to unfavorable conditions such as increased temperature, antibiotics, reactive oxygen species, and viruses could lead to protein misfolding and cell death. The increased production of proteins such as heat shock proteins (HSPs) and polyamines has been linked to protein misfolding sequestration, thus maintaining, enhancing, and regulating the cellular system. For example, heat shock protein 40 (Hsp40) works hand in hand with Hsp70 and Hsp90 to successfully assist the newly synthesized proteins in folding properly. On the other hand, polyamines such as putrescine, spermidine, and spermine have been widely studied and reported to keep cells viable under harsh conditions, which are also involved in cell proliferation, differentiation, and growth. Polyamines are found in all living organisms, including humans and viruses. Some organisms have developed a mechanism to hijack mammalian host cell machinery for their benefit like viruses need polyamines for infection. Therefore, the role of HSPs and polyamines in SARS-CoV-2 (COVID-19) viral infection, how these molecules could delay the effectiveness of the current treatment in the market, and how COVID-19 relies on the host molecules for its successful infection are reviewed.


Subject(s)
COVID-19 , Virus Diseases , Animals , Heat-Shock Proteins , Humans , Mammals/metabolism , Polyamines/metabolism , SARS-CoV-2 , Virus Diseases/metabolism
14.
Cell Signal ; 94: 110325, 2022 06.
Article in English | MEDLINE | ID: covidwho-1767965

ABSTRACT

Efforts to discover antiviral drugs and diagnostic platforms have intensified to an unprecedented level since the outbreak of COVID-19. Nano-sized endosomal vesicles called exosomes have gained considerable attention from researchers due to their role in intracellular communication to regulate the biological activity of target cells through cargo proteins, nucleic acids, and lipids. According to recent studies, exosomes play a vital role in viral diseases including covid-19, with their interaction with the host immune system opening the door to effective antiviral treatments. Utilizing the intrinsic nature of exosomes, it is imperative to elucidate how exosomes exert their effect on the immune system or boost viral infectivity. Exosome biogenesis machinery is hijacked by viruses to initiate replication, spread infection, and evade the immune response. Exosomes, however, also participate in protective mechanisms by triggering the innate immune system. Besides that, exosomes released from the cells can carry a robust amount of information about the diseased state, serving as a potential biomarker for detecting viral diseases. This review describes how exosomes increase virus infectivity, act as immunomodulators, and function as a potential drug delivery carrier and diagnostic biomarker for diseases caused by HIV, Hepatitis, Ebola, and Epstein-Barr viruses. Furthermore, the review analyzes various applications of exosomes within the context of COVID-19, including its management.


Subject(s)
COVID-19 , Exosomes , Virus Diseases , Antiviral Agents/metabolism , Antiviral Agents/pharmacology , Antiviral Agents/therapeutic use , Biomarkers/metabolism , COVID-19/diagnosis , Endosomes/metabolism , Exosomes/metabolism , Humans , Virus Diseases/diagnosis , Virus Diseases/metabolism
15.
Int J Mol Sci ; 23(4)2022 Feb 19.
Article in English | MEDLINE | ID: covidwho-1715402

ABSTRACT

Platelets, which are small anuclear cell fragments, play important roles in thrombosis and hemostasis, but also actively release factors that can both suppress and induce viral infections. Platelet-released factors include sCD40L, microvesicles (MVs), and alpha granules that have the capacity to exert either pro-inflammatory or anti-inflammatory effects depending on the virus. These factors are prime targets for use in extracellular vesicle (EV)-based therapy due to their ability to reduce viral infections and exert anti-inflammatory effects. While there are some studies regarding platelet microvesicle-based (PMV-based) therapy, there is still much to learn about PMVs before such therapy can be used. This review provides the background necessary to understand the roles of platelet-released factors, how these factors might be useful in PMV-based therapy, and a critical discussion of current knowledge of platelets and their role in viral diseases.


Subject(s)
Blood Coagulation Factors/metabolism , Blood Platelets/metabolism , Extracellular Vesicles/metabolism , Virus Diseases/metabolism , Animals , Cell-Derived Microparticles/metabolism , Humans , Platelet Activation/physiology
16.
Cells ; 11(4)2022 02 17.
Article in English | MEDLINE | ID: covidwho-1715130

ABSTRACT

Mitophagy, which is able to selectively clear excess or damaged mitochondria, plays a vital role in the quality control of mitochondria and the maintenance of normal mitochondrial functions in eukaryotic cells. Mitophagy is involved in many physiological and pathological processes, including apoptosis, innate immunity, inflammation, cell differentiation, signal transduction, and metabolism. Viral infections cause physical dysfunction and thus pose a significant threat to public health. An accumulating body of evidence reveals that some viruses hijack mitophagy to enable immune escape and self-replication. In this review, we systematically summarize the pathway of mitophagy initiation and discuss the functions and mechanisms of mitophagy in infection with classical swine fever virus and other specific viruses, with the aim of providing a theoretical basis for the prevention and control of related diseases.


Subject(s)
Mitophagy , Virus Diseases , Animals , Apoptosis , Immunity, Innate , Mitochondria/metabolism , Mitophagy/physiology , Swine , Virus Diseases/metabolism
17.
Cell Metab ; 34(3): 378-395, 2022 03 01.
Article in English | MEDLINE | ID: covidwho-1712531

ABSTRACT

Productive T cell responses to infection and cancer rely on coordinated metabolic reprogramming and epigenetic remodeling among the immune cells. In particular, T cell effector and memory differentiation, exhaustion, and senescence/aging are tightly regulated by the metabolism-epigenetics axis. In this review, we summarize recent advances of how metabolic circuits combined with epigenetic changes dictate T cell fate decisions and shape their functional states. We also discuss how the metabolic-epigenetic axis orchestrates T cell exhaustion and explore how physiological factors, such as diet, gut microbiota, and the circadian clock, are integrated in shaping T cell epigenetic modifications and functionality. Furthermore, we summarize key features of the senescent/aged T cells and discuss how to ameliorate vaccination- and COVID-induced T cell dysfunctions by metabolic modulations. An in-depth understanding of the unexplored links between cellular metabolism and epigenetic modifications in various physiological or pathological contexts has the potential to uncover novel therapeutic strategies for fine-tuning T cell immunity.


Subject(s)
COVID-19 , Neoplasms , Virus Diseases , Aged , Aging , CD8-Positive T-Lymphocytes , Cell Differentiation , Epigenesis, Genetic , Humans , Neoplasms/metabolism , Virus Diseases/metabolism
18.
Eur Rev Med Pharmacol Sci ; 26(2): 715-721, 2022 Jan.
Article in English | MEDLINE | ID: covidwho-1675570

ABSTRACT

OBJECTIVE: As N-acetylcysteine (NAC) is promising as a re-purposed drug for the adjunctive or supportive treatment of serious COVID-19, this article aimed to describe current evidence. MATERIALS AND METHODS: A search was performed in PubMed/Medline for "NAC", "viral Infection", COVID-19", oxidative stress", "inflammation", retrieving preclinical and clinical studies. RESULTS: NAC is a pleiotropic molecule with a dual antioxidant mechanism; it may neutralize free radicals and acts as a donor of cysteine, restoring the physiological pool of GSH. Serious COVID-19 patients have increased levels of reactive oxygen species (ROS) and free radicals and often present with glutathione depletion, which prompts a cytokine storm. NAC, which acts as a precursor of GSH inside cells, has been currently used in many conditions to restore or protect against GSH depletion and has a wide safety margin. In addition, NAC has anti-inflammatory activity independently of its antioxidant activity. CONCLUSIONS: Clinical and experimental data suggest that NAC may act on the mechanisms leading to the prothrombotic state observed in severe COVID-19.


Subject(s)
Acetylcysteine/therapeutic use , COVID-19 Drug Treatment , Acetylcysteine/chemistry , Antioxidants/chemistry , COVID-19/metabolism , COVID-19/virology , Glutathione/chemistry , Glutathione/metabolism , Humans , Oxidative Stress , Randomized Controlled Trials as Topic , Reactive Oxygen Species/metabolism , SARS-CoV-2/isolation & purification , Virus Diseases/drug therapy , Virus Diseases/metabolism
19.
J Neuroinflammation ; 19(1): 8, 2022 Jan 06.
Article in English | MEDLINE | ID: covidwho-1613238

ABSTRACT

BACKGROUND: The serine protease inhibitor nafamostat has been proposed as a treatment for COVID-19, by inhibiting TMPRSS2-mediated viral cell entry. Nafamostat has been shown to have other, immunomodulatory effects, which may be beneficial for treatment, however animal models of ssRNA virus infection are lacking. In this study, we examined the potential of the dual TLR7/8 agonist R848 to mimic the host response to an ssRNA virus infection and the associated behavioural response. In addition, we evaluated the anti-inflammatory effects of nafamostat in this model. METHODS: CD-1 mice received an intraperitoneal injection of R848 (200 µg, prepared in DMSO, diluted 1:10 in saline) or diluted DMSO alone, and an intravenous injection of either nafamostat (100 µL, 3 mg/kg in 5% dextrose) or 5% dextrose alone. Sickness behaviour was determined by temperature, food intake, sucrose preference test, open field and forced swim test. Blood and fresh liver, lung and brain were collected 6 h post-challenge to measure markers of peripheral and central inflammation by blood analysis, immunohistochemistry and qPCR. RESULTS: R848 induced a robust inflammatory response, as evidenced by increased expression of TNF, IFN-γ, CXCL1 and CXCL10 in the liver, lung and brain, as well as a sickness behaviour phenotype. Exogenous administration of nafamostat suppressed the hepatic inflammatory response, significantly reducing TNF and IFN-γ expression, but had no effect on lung or brain cytokine production. R848 administration depleted circulating leukocytes, which was restored by nafamostat treatment. CONCLUSIONS: Our data indicate that R848 administration provides a useful model of ssRNA virus infection, which induces inflammation in the periphery and CNS, and virus infection-like illness. In turn, we show that nafamostat has a systemic anti-inflammatory effect in the presence of the TLR7/8 agonist. Therefore, the results indicate that nafamostat has anti-inflammatory actions, beyond its ability to inhibit TMPRSS2, that might potentiate its anti-viral actions in pathologies such as COVID-19.


Subject(s)
Benzamidines , Guanidines , Inflammation/drug therapy , Serine Endopeptidases/metabolism , Serine Proteinase Inhibitors , Toll-Like Receptor 7/immunology , Virus Diseases/drug therapy , Animals , Benzamidines/pharmacology , Benzamidines/therapeutic use , COVID-19/complications , Guanidines/pharmacology , Guanidines/therapeutic use , Illness Behavior/drug effects , Imidazoles/administration & dosage , Imidazoles/immunology , Inflammation/metabolism , Inflammation/virology , Male , Mice , Serine Proteinase Inhibitors/pharmacology , Serine Proteinase Inhibitors/therapeutic use , Toll-Like Receptor 7/agonists , Virus Diseases/metabolism , Virus Diseases/virology , COVID-19 Drug Treatment
20.
J Exp Med ; 219(2)2022 02 07.
Article in English | MEDLINE | ID: covidwho-1593236

ABSTRACT

Emerging viruses threaten global health, but few experimental models can characterize the virus and host factors necessary for within- and cross-species transmission. Here, we leverage a model whereby pet store mice or rats-which harbor natural rodent pathogens-are cohoused with laboratory mice. This "dirty" mouse model offers a platform for studying acute transmission of viruses between and within hosts via natural mechanisms. We identified numerous viruses and other microbial species that transmit to cohoused mice, including prospective new members of the Coronaviridae, Astroviridae, Picornaviridae, and Narnaviridae families, and uncovered pathogen interactions that promote or prevent virus transmission. We also evaluated transmission dynamics of murine astroviruses during transmission and spread within a new host. Finally, by cohousing our laboratory mice with the bedding of pet store rats, we identified cross-species transmission of a rat astrovirus. Overall, this model system allows for the analysis of transmission of natural rodent viruses and is a platform to further characterize barriers to zoonosis.


Subject(s)
Disease Models, Animal , Disease Susceptibility , Virus Diseases/etiology , Virus Diseases/transmission , Animal Diseases/transmission , Animal Diseases/virology , Animals , Biomarkers , Host-Pathogen Interactions , Humans , Interferons/metabolism , Mice , Mice, Knockout , Microbial Interactions , Rodentia , Virus Diseases/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL